
Redefining
Observability: The
Experience-Centric
Approach

2

E
X

P
E

R
I
E

N
C

E
-

C
E

N
T

R
I
C

O

P
E

R
A

T
I
O

N
S

Performance
Complete Disconnect

User Experience

Your business needs Experience-Centric Operations

While Observability and Application Performance Monitoring (APM) tools have
transformed how engineering and operations teams function over the last ten
years, there are several challenges that every VP of Ops and CTO still face with no
clear solution in sight:

• Being surprised by customer issues on social media, from

customer support calls, or through the CEO, even when their tools

say everything is fine.

• Needing an army of expert engineers to debug whenever a major

incident happens.

• Exploding costs of observability tools to monitor their growing

infrastructure.

These challenges are all rooted in the same underlying problem. Existing

Observability tools and the teams that use them are disconnected from what

really matters to the business: user experience and engagement.

F I G U R E 1

Operations need to evolve from focusing on low-level system performance to
higher-level user experience. Experience-Centric Operations is a new paradigm
that will transform operations and engineering teams to be more efficient, more
connected to the business, and more cost effective.

Disconnect Between Operational Tools and Customer Experience

3

E
X

P
E

R
I
E

N
C

E
-

C
E

N
T

R
I
C

O

P
E

R
A

T
I
O

N
S

What is Experience-Centric Operations?

Experience-Centric Operations is a shift in methodology where user experience is
at the core of operations. System level monitoring is, of course, needed but is not
always kept in context of user experience in real time. By user experience, we are
not talking about page load times and crashes on a small sample of users. We
are talking about monitoring every user flow across every user in the application
in a quantified manner in real-time. If a user is not able to login, sign up, or find
content within an expected period of time, we should be alerted to the issue. If
the percentage of successful sign ups suddenly dropped from 98% to 94% for
whatever reason, we should know about it immediately—and not because we
read complaints on social media.

Experience-Centric Operations circumvents these problems by intrinsically
connecting a comprehensive measurement of user experience with system
and application performance, removing surprise escalations, democratizing
diagnostics by natively connecting the dots, and reducing cost by focusing on
the data that matters.

Here is a simple real-world example.

In the picture below, we are looking at the Conviva UI for a live sports app,
specifically tracking an experience metric called Login Processing Time in the
lead up to a big event. This metric measures the time taken to complete the
login process after the user has entered their credentials and clicked login. It
would include any SSO integration, third party authentication checks, and other
activities to complete the login process and bring up a working application. It’s
important to note that this is not as simple as measuring the response of a single
API call.

While monitoring the metric, we see a sudden spike just before the event is
about to start. Because we are directly measuring Login Processing Time, we
immediately know that users are impacted and how many are impacted.

4

E
X

P
E

R
I
E

N
C

E
-

C
E

N
T

R
I
C

O

P
E

R
A

T
I
O

N
S

With just two clicks, in the picture next page, we determine that only users on a
specific iPhone 15 version and on two specific device models are experiencing
the login problem.

If not addressed immediately this would cause a major disruption for users
attempting to watch the event causing churn and brand damage. Because we
are directly measuring Login Processing Time, we immediately know that users
are impacted and how many are impacted. With just two clicks, in the picture
above, we determine that only users on a specific iPhone 15 version and on two
specific device models are experiencing the login problem.

With two more clicks, in the picture below, we pinpoint a slow call to a third
party authentication service. In this case, no amount of meticulous backend
monitoring would have helped us locate root-cause, as it is a third-party issue.
With user-centric operational monitoring, however, we easily connected the dots
from Login Processing Time to the specific device models to the specific network
call, leaving us with a clear understanding of the issue and its impact, and a
concrete action to resolve the issue.

A new operational methodology

Experience-Centric Operations is a new way of thinking and does take some
getting used to. As with all paradigm shifts, there must be a significant benefit.
Figure 3 illustrates this difference and the massive benefit. On the left is the
current paradigm with an infrastructure-centric approach. Monitoring is primarily
from backend systems through logs, metrics, and traces. Ops teams monitor
these regularly, but surprises still happen and many experience issues still go

Total 143 K 2.09 M 0 0.345 sec

7.32 K 93.8 K 0 0.625 sec

2.39 K 5.67 K 0 1.06 sec

3.81 K 60.6 K 0 0.425 sec

5.01 K 20.7 K 0 0.183 sec

7.26 K 95.9 K 0 0.432 sec

4.35 K 143 K 0 0.286 sec

36.6 sec

43.5 sec

87.8 sec

13.1 sec

39.1 sec

26.7 sec

33.3 sec

5.62sec

30.2 sec

18.3 sec

1.13 sec

0.0691 sec

0.592 sec

0.517 sec

Network Request Count Total Events App Crashes
Avg. Network

Request Duration
Login Processing

TimeFull Login Time

iPhone 11

iPhone 13 Mini

iPhone 13 Pro

iPhone 8 Plus

iPhone 12

iPhone 13

Device Operating System Version

Total 143 K 2.09 M 0 0.345 sec

2.27 K 27.4 K 0 1.02 sec

121 K 1.7 M 0 0.318 sec

1.97 K 35.9 K 0 0.711 sec

1.84 K 22.3 K 0 0.611 sec

511 9.29 K 0 0.357 sec

36.6 sec

51.6 sec

37.8 sec

28.4 sec

6.27 sec

29.7 sec

5.62 sec

18.3 sec

3.2 sec

0.412 sec

0.407 sec

0.358 sec

Network Request Count Total Events App Crashes
Avg. Network

Request Duration Full Login Time
Login Processing

Time

iOs 15.6.1

iOS 16.6

iOS 15.7.8

iOS 16.5.1

iOS 16.0

Network Request Url Path

Total 36 61 NA 20.3 sec

14 14 NA 48.4 sec

3 7 NA 5.02 sec

1 1 NA 4.49 sec

1 2 NA 3.33 sec

11 13 NA 2.21 sec

Network Request Count Total Events App Crashes
Avg. Network

Request Duration

/reggie/v1/acme/regcode

/adobe-services/usermetad...

/adobe-services/sessionDev...

/adobe-services/authorizeD...

/adobe-services/deviceShor...

Network Request Url Host

Total 2.05 K 5.35 K NA 1.19 sec

44 73 NA 16.6 sec

16 19 NA 3.61 sec

24 44 NA 3.56 sec

19 38 NA 3.41 sec

8 10 NA 3.41 sec

Network Request Count Total Events App Crashes
Avg. Network

Request Duration

sp.auth.reggie.com

catalog-service-cdn.api.reg...

image-resizer-cloud-dcn.reg...

control.reggie.com

test.reggie.com

5

E
X

P
E

R
I
E

N
C

E
-

C
E

N
T

R
I
C

O

P
E

R
A

T
I
O

N
S

under the radar. When an escalation comes from customers or social media,
it triggers a frantic search for potential issues. There is no understanding of the
magnitude or impact of the issue, nor clear guidance on priority.
This means that in many cases the ops team and an army of expert engineers
across multiple areas of the system are brought in to diagnose the issue.
Eventually, when an issue is found and fixed, the team is not sure if the customer
problem is resolved or not since there is no direct monitoring of customer
experience. This approach leads to more customer impact and higher cost.

The right side of the figure is how things work in an Experience-Centric approach.
There is an equal emphasis on measurement of user experience and system
performance. When user experience is impacted, the issue is immediately
and automatically detected and then diagnosed by correlating with system
performance, pinpointing the component or components causing the issue. This
means the issue can be resolved quickly and with just a few team members.
The team only has to look at the data that matters, which reduces cost. As the
monitoring system learns patterns of system performance that impact user
experience, it can start to predict experience-impacting issues before they
happen and classify system performance issues as customer-impacting or non-
customer-impacting to aid prioritization and investment.

F I G U R E 3

Fix CPU Issue Fix App Version Issue Fix Player Version Issue

Fast | Proactive | Low Cost

Experience-Centric
Slow | Reactive | Expensive

Infrastructure-Centric

58% longer 38% longer Time to first play
10.2 minutes

Experience issues
escalated from cus-
tomers and social
media

Metrics Logs

Traces

Don’t know the magnitude or severity of the issue!

6

E
X

P
E

R
I
E

N
C

E
-

C
E

N
T

R
I
C

O

P
E

R
A

T
I
O

N
S

A new paradigm of technology

Unfortunately, existing observability tools are not capable of solving the
disconnect between experience and performance or enabling an experience-
centric approach to operations. They cannot measure experience metrics like
Login Processing Time continuously in real-time and cannot connect them
to performance causes. A new paradigm of technology is needed to unlock
Experience-Centric Operations. This technology must support a flexible and easy
way to compute experience metrics across all users in real-time, automatically
alert on these metrics based on anomalies, then connect them to performance
in the client and in the backend to quickly diagnose them. Each of these actions
is individually very valuable, but together they enable a transformation that
dramatically improves user experience and reduces operational cost.

Observability Tools Cannot Bridge the

Experience Disconnect

Today’s monitoring tools focus almost exclusively on backend servers and
applications. Unfortunately, this means ops teams are completely disconnected
from the user experience, leaving them guessing in the dark and with no context
on how to prioritize. When an escalation comes in because users can’t sign up,
an army of expert engineers must be brought in to find the issue, interrupting
their high value work. Since there is no clear path through the data to the root
cause, even the engineers are reduced to guesswork and scouring all the
systems in the path of sign up for some solution. This is slow, expensive, and
disruptive. Once they do find a probable cause, make some time, and fix it, they
still don’t know for sure if they addressed the real problem since there is no direct
validation of user experience.

The disconnect from user experience and the need to find a way to measure it
directly is a known problem for companies, and observability tools have been
trying to address it with two approaches.

1. By ingesting more data from backend servers and applications, observability
solutions hope to capture a higher percent of user-impacting issues.
This means capturing more logs, more metrics, and introducing traces or
capturing more traces. This bloat has led to higher costs for companies,
without ultimately solving their problem: it is simply not possible to

understand experience from backend sources alone.

7

E
X

P
E

R
I
E

N
C

E
-

C
E

N
T

R
I
C

O

P
E

R
A

T
I
O

N
S

2. Observability solutions introduced Real User Monitoring (RUM) tools to try to
capture user experience. RUM unfortunately falls noticeably short in solving
the problem, as the tools are built on severely limited technology, which is
expensive to use, lacking in functionality, and only capable of running on a
small sample of users. Read more about the limitations of RUM tools here.

Neither of these costly approaches is capable of solving the performance-
experience disconnect. It continues to be a major stress point for companies
because, despite the human, technological, and financial resources being thrown
at the problem, surprise escalations are still happening every day, stealing expert
engineers away from innovation for the business.

What’s the problem with legacy observability tools?

The biggest drawback is fundamental: today’s solutions cannot compute
true experience metrics in real-time because they simply do not have the
foundational technology needed for the task. All these tools are built merely
to count events, such as crashes, errors, page loads, etc.—and even this they
struggle to accomplish at scale.

Experience, however, cannot be computed as a simple count of events.
Understanding the complexities of the user journey requires us to compute
complex metrics based on timing, time intervals, sequences, and state. We
refer to this entire process as stateful analytics or a metric based on this as
stateful metric.

Let’s look at this more in-depth:

A count of errors is a stateless metric. It does not depend on understanding
sequences, time intervals, or state.

Time to Sign Up is a stateful metric (granted, a fairly simple one, but RUM
tools cannot even compute this). It can be considered stateful because the
monitoring system must identify the start and successful completion of sign-
up for a particular session (a process we call sessionization), then compute the
time difference between the two for each session, then aggregate them across
sessions—all in real-time.

We can introduce a new level of complexity to the Time to Sign Up metric by
excluding any time spent outside the app. Let’s say the user received a text while
signing up, so they spent a minute in their messaging app responding to it in the
middle of the sign-up process. This minute should be excluded from the Time to

Sign Up metric. You can see how the user session rapidly becomes much more
complex than simply calculating time between two events.

https://www.conviva.com/blog/weve-forgotten-about-the-users-in-real-user-monitoring/

8

E
X

P
E

R
I
E

N
C

E
-

C
E

N
T

R
I
C

O

P
E

R
A

T
I
O

N
S

Maybe you’re asking why you couldn’t simply compute the Sign Up metric in the
client and send it as an event. While this may sound feasible at first, it does not
work in practice, because computing all the relevant stateful metrics in the client
across all device types and variations of user flows and versions and maintaining
this over time creates too high an overhead, leading to inaccurate metrics
and lack of trust while deteriorating client performance. Even when companies
commit to this approach with all seriousness, they are quickly forced to abandon
it, leaving the ops team where it began—stuck with low-level performance
visibility and no understanding of the user experience.

Figure 4 shows what we mean by experience metrics for a video streaming
app. On the left are low-level performance metrics (the focus of RUM tools). In
the middle are critical experience metrics, categorized by each part of the user
flow. On the right are engagement metrics (the focus of product analytics). A
comprehensive understanding of user experience requires measuring all three in
real-time in a connected manner:

• Engagement reflects outcomes that matter for the business. It

helps us understand the impact of experience and define what a

good experience is.

• Performance helps to diagnose why we have an experience issue.

• Experience is the connection between performance and

engagement. It is the most important missing piece in

every business today and it cannot be supplied by today’s

observability tools.

F I G U R E 4

Transform critical experiences, performance, and engagement into real-time operational metrics

9

E
X

P
E

R
I
E

N
C

E
-

C
E

N
T

R
I
C

O

P
E

R
A

T
I
O

N
S

Conviva’s Approach to Experience-Centric Operations &

Stateful Analytics

Conviva’s approach to building a platform for Experience-Centric Operations
involves two key technologies: 1) A thin SDK (we call Sensor), which is a new
approach to collecting data from application endpoint, and 2) Time-State
Technology, which is a new abstraction and system for efficient, real-time, and
stateful data processing at scale.

Thin SDK Strategy Enables Light-Weight and Accurate

Monitoring of Experience

The first challenge on the way to connecting user experience to system
performance is the need to deploy an SDK, which is the last thing any app
development team wants to do.

We get this. We’ve lived this reality for 15 years as we currently manage about
7 billion SDK instances across thousands of apps and device models, web
browsers, phones, tablets, smart TVs, set-top boxes, game consoles, and even
cars. From this experience, we can say with confidence that it’s not possible
to avoid collecting data from the app when you’re trying to measure true user
experience. What we also know, however, is that we can do much better than all
the RUM and product analytics SDKs out there.

The number one lesson we’ve learned regarding SDKs is that they have to be
extremely simple and do as little work as possible. This means we must resist
doing any computation or manipulation of data in the SDK. This is counterintuitive
because at first glance, it seems like the cheaper option, since we’re using the
device’s CPU cycles instead of our backend, and the easier option, since the
metrics are directly applied to the data. In reality, though, this make the SDK
heavier, which slows down the app, and more prone to obsolescence, since the
metric implementation will fall out of date and become inaccurate for weeks
or months at a time, before an update can be applied. If you’re computing 20
metrics across a dozen device types, that’s 240 metric implementations that
could be outdated and even erroneous.

1 0

E
X

P
E

R
I
E

N
C

E
-

C
E

N
T

R
I
C

O

P
E

R
A

T
I
O

N
S

Conviva Sensor (Thin SDK) Moves Complexity to the Backend

To solve this, our SDK only collects events without enforcing any semantic
schema. We ingest the events exactly as they are exposed by the device OS and
your app. This means developers don’t have to instrument each event like they
would if they wanted to process the data in Adobe or Google Analytics or if they
were sending custom events to a RUM tool. Instead, they can simply connect their
app to the Conviva platform through our SDK, and we can pull in all event data
without sampling. The magic here is that the developers can then control which
events they want to pull in, map and rename events, and create any stateful (or
stateless) metric from these events—all in the backend.

This approach does mean we are taking on a lot more processing load on our
backend than other systems. Dynamic event mapping and stateful metric
computation were not actions existing tools could do in real-time at the scale
of millions of endpoints, but they were the actions we needed to accomplish to
solve Experience-Centric Operations. It turns out no big-data technology (open
source or proprietary) could handle what we needed, so we had to create it
completely from scratch.

F I G U R E 5

1 1

E
X

P
E

R
I
E

N
C

E
-

C
E

N
T

R
I
C

O

P
E

R
A

T
I
O

N
S

Time-State Technology Enables Experience-Centric Operations

Let’s restate the problem facing businesses in the digital environment: they need the
ability to do stateful metric computation in the big-data backend in real-time at the
scale of millions of endpoints, and it must be cost-effective enough to be a practical
solution for operations.

We tried to solve this problem with every major big-data platform—Spark, Flink, Kafka,
Druid, Clickhouse, etc. None of them can address the entire issue on their own. They
offer good components for a solution, but they are not capable of being the core
engine to compute stateful metrics from raw event streams in real-time with high
scale and efficiency.

This realization led us to dive in and really understand why this is the case, which led
us to a key insight: the problem is not the systems themselves; the problem is the
abstraction that every one of them is built on—the tabular abstraction dating back
decades, which is at the core of every database and big-data system. The tabular
abstraction represents every point of data as rows and columns in a table, with
operators for manipulating the data. We found that the tabular abstraction is not

good for stateful analytics.

This realization gave us the freedom to innovate at a foundational level, which
ultimately led us to create a new abstraction, called Timeline, and our Time-State

Technology, which represents all event stream data as timelines with a set of timeline
operators to compute stateful metrics.

Timelines offer a more efficient way to write queries compared to the conventional
approaches which we tried and found lacking, including streaming systems, time-
series databases, and time-based extensions to SQL. As a result, Timelines can model
dynamic processes more directly than any of those pre-existing approaches and
express the requirements of time-state analytics easily and intuitively. To support this
new abstraction, we’ve also codified the concept of Timeline Algebra, which defines
operations over three basic Timeline Types: state transitions, discrete events, and
numerical values. If you’re interested in the details of Time-State Technology, read

more here.

https://www.conviva.com/blog/filling-the-analytics-gap-why-traditional-analytics-wont-impact-your-business/

1 2

E
X

P
E

R
I
E

N
C

E
-

C
E

N
T

R
I
C

O

P
E

R
A

T
I
O

N
S

Our results speak for themselves

To give you a taste of the performance gains we are getting with our Time-State
Technology, Figure 4 shows a benchmark of our performance compared to the state-
of-the-art big-data platforms. This is our first iteration of the Time-State model, and
we have many ideas to further optimize, but we have already seen approximately 10x
better performance compared to the SQL-based solutions, which is a key enabler for
making Experience-Centric Operations a reality.

F I G U R E 6

Ready to discover the transformative impact of Experience-Centric Operations?
Talk to Conviva.

https://www.conviva.com/get-started/

